Recurrence relations for orthogonal rational functions

نویسندگان

  • Miroslav S. Pranic
  • Lothar Reichel
چکیده

It is well known that members of families of polynomials, that are orthogonal with respect to an inner product determined by a nonnegative measure on the real axis, satisfy a three-term recursion relation. Analogous recursion formulas are available for orthogonal Laurent polynomials with a pole at the origin. This paper investigates recursion relations for orthogonal rational functions with arbitrary prescribed real or complex conjugate poles. The number of terms in the recursion relation is shown to be related to the structure of the orthogonal rational functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizations of orthogonal polynomials

We give a survey of recent generalizations for orthogonal polynomials that were recently obtained. It concerns not only multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, or multipole (orthogonal rational functions) variants of the classical polynomials but also extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations...

متن کامل

Hermite Orthogonal Rational Functions

We recount previous development of d-fold doubling of orthogonal polynomial sequences and give new results on rational function coefficients, recurrence formulas, continued fractions, Rodrigues’ type formulas, and differential equations, for the general case and, in particular, for the d-fold Hermite orthogonal rational functions.

متن کامل

Ratio asymptotics for orthogonal rational functions on an interval

Let {α1, α2, . . . } be a sequence of real numbers outside the interval [−1, 1] and μ a positive bounded Borel measure on this interval satisfying the Erdős-Turán condition μ′ > 0 a.e., where μ′ is the RadonNikodym derivative of the measure μ with respect to the Lebesgue measure. We introduce rational functions φn(x) with poles {α1, . . . , αn} orthogonal on [−1, 1] and establish some ratio asy...

متن کامل

Ratio Asymptotics for Orthogonal Rational Functions on the Interval [−1, 1]

Let {α1, α2, . . . } be a sequence of real numbers outside the interval [−1, 1] and μ a positive bounded Borel measure on this interval. We introduce rational functions φn(x) with poles {α1, . . . , αn} orthogonal on [−1, 1] and establish some ratio asymptotics for these orthogonal rational functions, i.e. we discuss the convergence of φn+1(x)/φn(x) as n tends to infinity under certain assumpti...

متن کامل

Recurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions

In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2013